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The effect of an electric field on a periodic array of two-dimensional liquid drops
suspended in simple shear flow is studied numerically. The shear is produced by
moving the parallel walls of the channel containing the fluids at equal speeds but
in opposite directions and an electric field is generated by imposing a constant
voltage difference across the channel walls. The level set method is adapted to
electrohydrodynamics problems that include a background flow in order to compute
the effects of permittivity and conductivity differences between the two phases on the
dynamics and drop configurations. The electric field introduces additional interfacial
stresses at the drop interface and we perform extensive computations to assess the
combined effects of electric fields, surface tension and inertia. Our computations for
perfect dielectric systems indicate that the electric field increases the drop deformation
to generate elongated drops at steady state, and at the same time alters the drop
orientation by increasing alignment with the vertical, which is the direction of the
underlying electric field. These phenomena are observed for a range of values of
Reynolds and capillary numbers. Computations using the leaky dielectric model also
indicate that for certain combinations of electric properties the drop can undergo
enhanced alignment with the vertical or the horizontal, as compared to perfect
dielectric systems. For cases of enhanced elongation and alignment with the vertical,
the flow positions the droplets closer to the channel walls where they cause larger wall
shear stresses. We also establish that a sufficiently strong electric field can be used to
destabilize the flow in the sense that steady-state droplets that can exist in its absence
for a set of physical parameters, become increasingly and indefinitely elongated until
additional mechanisms can lead to rupture. It is suggested that electric fields can be
used to enhance such phenomena.

1. Introduction
The motion of liquid drops in a shear flow is a fundamental problem arising in

several applications including emulsification, mixing and the rheology of suspensions.
Important issues in these flows include the effect of parameters on the elongation
and possible drop breakup as well as the resulting flow inside the drops which
affects convective transport and mixing. Both of these phenomena are of relevance
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to microfluidic applications and lab-on-a-chip technologies that are receiving consi-
derable attention (Stone, Stroock & Ajdari 2004; De Menech 2006; Song, Chen &
Ismagilov 2006).

The present study formulates and studies computationally the dynamics of viscous
two-dimensional drops subjected to a linear shear in a Couette device which is filled
with a second immiscible viscous fluid. Inertia and surface tension forces are retained
as has been done in previous two- and three-dimensional studies in the absence of
electrostatic fields (Sheth & Pozrikidis 1995; Li, Renardy & Renardy 2000; Renardy &
Cristini 2001; Khismatulin, Renardy & Cristini 2003; Wagner, Wilson & Cates 2003;
Cristini & Tan 2004; Lee & Pozrikidis 2006). In the related studies of Sibillo et al.
(2006) and Renardy (2007), the effect of confinement and inertia is considered in
detail. It is reported that confinement in microchannels enables a drop to sustain
significant elongation before breakup can occur, and the mechanism is deemed to
promote a monodisperse droplet distribution.

An alternative method of producing monodisperse droplet distributions in
microchannels is the use of electric fields. This has been demonstrated in the
experiments of Ozen et al. (2006) at fairly small shear rates characterized by Reynolds
numbers of order O(10−2). Ozen et al. produced highly stable two-fluid Poiseuille
flows in microchannels and studied their stability under vertical electric fields. The
field causes instability leading to an interfacial flapping motion that causes periodic
collisions with the walls. As long as the electric field is acting, an array of alternating
plugs of the two fluids emerge downstream and are carried along with the flow.
When the field is switched off, the shapes relax to form a monodisperse array of
droplets of one fluid suspended in the second fluid. Suspended drop volumes decrease
with increasing electric fields; they can be relatively small and spherical or large and
similar to a Bretherton bubble (Bretherton 1961). The reader is referred to Ozen
et al. (2006) for experimental results and photographs of the phenomenon.

In applications, the separation of the two fluids can be used to perform reactions
where mixing inside the droplets is essential (see for example the review by Song
et al. 2006 and references therein). In the framework of the experiment of Ozen et al.
described above, we envision a second stage where the electric field is imposed once
again on the monodisperse train of droplets. The aim is to enhance mixing through a
competition between viscous, electrical and surface tension stresses along with inertia.
Ward & Homsy (2001, 2003) have demonstrated (theoretically and experimentally)
that electric fields can be used to induce mixing in translating droplets. In order to
obtain a fundamental understanding of the different mechanisms through a direct
simulation, we choose a model problem of a periodic array of drops in a Couette
device whose walls move at equal and opposite velocities U . In the absence of electric
fields, this problem has been solved numerically in the Stokes and Navier–Stokes
regimes. The present work is a systematic study of electric field effects on droplets
immersed in a simple shear flow. The work of Fernández et al. (2005) on the effects
of electrostatic forces on oblate drops in a channel is of relevance to the present
calculations and is discussed in detail below.

There have been numerous studies on the effect of a simple shear on viscous
two-dimensional drops suspended in a channel in the absence of electric fields. When
inertia is absent calculations based on boundary integral equation methods have
provided a fairly complete picture of the flow. It has been established by Kennedy,
Pozrikidis & Skalak (1994) and Stone (1994) (see also Zhou & Pozrikidis 1993a, b,
1994; Li, Zhou & Pozrikidis 1995; Li, Charles & Pozrikidis 1996; Charles & Pozrikidis
1998), that if the drop is sufficiently more viscous than the suspending fluid then the
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shear flow deforms it until it reaches an oblate stationary shape independent of the
value of the surface tension. Elongation and indefinite thinning occurs in principle
for large drop viscosities at zero Reynolds number as the shear is increased, but
eventually the drop can break up due to non-hydrodynamic effects such as Van der
Waals forces. Singular events such as cusp formation may take place in sheared two-
dimensional interfacial flows as has been demonstrated by Pozrikidis (1997, 1998). In
axisymmetric geometries the phenomena are quite distinct due to the presence of the
Rayleigh instability that acts to break up an elongated axisymmetric droplet (Taylor
1934; Rallison & Acrivos 1978; Rallison 1981; Ryskin & Leal 1984). In such cases
inertia acts to shift the critical value of the capillary number Ca (defined to be the
ratio of viscous to capillary forces) where breakup occurs. For example a sufficiently
large Reynolds number can induce breakup at capillary numbers where no breakup
is observed at zero Reynolds number (Li et al. 2000; Renardy & Cristini 2001). By
concentrating on two-dimensional droplets we aim to isolate the effects of inertia and
electrostatic forces from three-dimensional destabilizations due to surface tension.

The computational study of Sheth & Pozrikidis (1995) uses a variant of the
immersed boundary method (Peskin 1977). A periodic array of initially circular drops
of different viscosities is introduced in a bounded Couette flow and the problem is
evolved in time. The relevant parameters are the capillary number Ca, the Reynolds
number Re, the drop to surrounding fluid viscosity ratio λ, the initial drop size and
the separation between drops. Results are presented for fixed drop size and drop
separation distance at Reynolds numbers Re= 1, 10, 50, 100, viscosity ratios λ= 1, 10
and a range of capillary numbers. The effect of inertia on steady-state deformed
drops is to lead to more elongated steady states initially, and if Re is increased
sufficiently an indefinite elongation emerges without a final steady state. A similar
behaviour is found starting from a fixed Re and a sufficiently small value of Ca which
is then increased – as the surface tension is reduced deformation is enhanced and
no steady states emerge at sufficiently large Ca. The critical value of Ca (for flows
of a given viscosity ratio λ), which separates steady states and indefinitely deformed
ones, is found to decrease as the Reynolds number is increased. At values of λ that
are sufficiently large so that if they are immersed in a Stokes flow they would reach
a steady deformed state, it is found that as the Reynolds number is increased they
can be caused to deform indefinitely, establishing that inertia is a mechanism that
promotes drop deformation. Similar findings are reported by Wagner et al. (2003)
who use lattice Boltzmann methods to perform their computations.

When electric fields are present the electrostatic forces act to modify the scenario
described above. The purpose of the present work is a detailed study of such effects
for pairs of dielectric and leaky dielectric fluids. The idealization to non-conducting
perfect dielectric fluids is a useful leading-order approximation. If we allow the
fluids to be poor conductors, then even a small conductivity allows electric charge
carriers to reach the drop interface and form a diffuse charge layer there. In perfect
dielectrics the normal components of the electric displacement field on either side
of the interface match so that there is no such charge layer. In leaky dielectrics,
charge accumulates at the interface to adjust the field and to ensure conservation of
the electric current when the conductivities of the fluids differ. However, some cases
have been reported where oblate shapes were observed while prolate deformations
were predicted theoretically (O’Konski & Thacher 1953; Allan & Mason 1962).
Taylor (1966) noticed that equilibrium shapes in leaky dielectrics only exist if the
electric stresses are balanced by variable pressure differences across the interface.
This implies in turn, that at equilibrium the fluids inside and outside the drop are in
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continuous motion, even if the incident flow is zero. In the same paper Taylor analysed
the static configuration of spherical drops in the zero Reynolds number limit and
derived analytically a relation that discriminates between prolate and oblate forms.
For more recent work on the electrohydrodynamics of drops including axisymmetric
configurations we refer the reader to Feng & Scott (1996), Feng (1999, 2002), Lac &
Homsy (2007), Collins et al. (2008) and references therein.

In a recent study, Fernández et al. (2005) consider electrostatic effects on two-
dimensional oblate drops in a channel. They consider low conductivity cases and
use the leaky dielectric model (see Smith & Melcher 1967; Melcher & Taylor 1969;
Saville 1997). Using the front tracking algorithm of Unverdi & Tryggvason (1992),
they compute the electrohydrodynamic flow at finite Reynolds numbers for a large
number of drops that model an emulsion. The parameters are chosen so that the
drops remain almost spherical and attention is focused on the formation of chains
of drops that align with the electric field and can span the channel, at least for
low flow rates. It is shown that the parameters can be chosen so that the flow
can induce an attraction of drops which are in line with the electric field but a
repulsion of drops which are in a line perpendicular to the field. For low flow
rates the drops can form chains or fibres which span the channel; these chains are
broken up at higher flow rates and short fibres are found on the walls, while at
even higher flow rates the shear prevents chain formation and a suspension of drops
emerges. In this study, we are mostly interested in drop sizes that are much larger
than those of Fernández et al. (2005) which can undergo significant deformation;
this is motivated by the experiments of Ozen et al. (2006). In their mathematical
model, Fernández et al. (2005) approximated the discontinuous jump in the electric
permittivity across the interface by a smoothed function. Then, by assuming that
the electric field and the dielectric permittivity are continuous they incorporated a
reduced form of the electrohydrodynamic force into the momentum equations (Saville
1997). Note that the proper form of the electrohydrodynamic force for methods that
utilize smoothing is still an open question. More recently, Tomar et al. (2007) derived
a new representation of the electrohydrodynamic force that satisfies the concept of
continuum forces introduced by Brackbill, Kothe & Zamech (1992). In the same
publication, they presented validation results of their model for a set of test problems
with exact or approximate solutions in the absence of a background shear flow. The
present study involves a background shear and as a result there is little overlap with
the work of Tomar et al. (2007).

The remainder of the paper is organized as follows: In § 2 the mathematical model
is formulated. The method of solution is described in § 3. This leads to § 4, where the
results of our computations for a wide range of parameters are given. Finally, § 5 is
devoted to concluding remarks.

2. Formulation and governing equations
In this section we summarize the mathematical model that is employed to study

the effects of an electric field on a periodic array of liquid drops in simple shear flow.
The hydrodynamics are governed by the incompressible Navier–Stokes equations and
the electrostatic model is used to describe electric field effects. Since material and
electrical properties are taken to be constant in each phase, the electromechanical
coupling occurs at the interface that separates the drop phase and the suspending
fluid. We refer the reader to the comprehensive reviews on electrohydrodynamics by



Electric field effects on the deformation of two-dimensional liquid drops 371

t

Fluid--fluid interface Π

angle θ
Orientation

M
inor axis

n

M
ajo

r a
xis

L max

L
m

in

Linear velocity profile

+Uwall

–Uwall

x

y

2H

ε1, σ1
ε2, σ2

Streamwise L–periodicity

Suspending fluid (1)Drop phase (2)

Lower wall electrode (grounded)

Upper wall electrode (V=1)

Figure 1. Schematic illustration of a periodic array of liquid drops in a Couette device when
an vertical electric field is present in the gap.

Melcher & Taylor (1969) and Saville (1997) (see also Smith & Melcher 1967 for a
detailed discussion of the mathematical model).

Figure 1 shows a schematic illustration of one period of an infinite array of
liquid drops in a Couette flow device when a vertical electric field is present in the
gap between the walls. The drop phase and the surrounding fluid are immiscible
and can have different material properties. Here, Ω1 and Ω2 represent the regions
occupied by the suspending fluid and the drop phase, respectively. The two regions are
separated by a deformable interface Π , which can in general represent discontinuities
in pressure, density, dielectric permittivity, conductivity and viscosity. The fluid flow
in the two regions combined with the motion of the interface constitute a nonlinear
time-dependent problem. The flows in each region are governed by the conservation
equations for mass and momentum

∇ · ui = 0, (2.1)

ρi

Dui

Dt
= −∇pi + ∇ · (μi2Di), (2.2)

where Di := (1/2)(∇u + ∇uT) is the rate of deformation tensor, D/Dt = ∂t + (u · ∇)
is the Lagrangian time derivative, u is the velocity vector, p is the pressure, ρ is the
density and μ is the dynamic viscosity. The boundary conditions are those of no
slip (implying no penetration also) at the rigid channel walls and periodicity in the
horizontal direction – the boundary conditions at the drop surface are given below.
Buoyancy has been neglected in the momentum equations (2.2). Furthermore, we set
ρ1/ρ2 = μ1/μ2 = 1. Although a parametric study of the effects of varying ρ1/ρ2 and
μ1/μ2 would be interesting, here we only present results for varying Reynolds number,
capillary number and electric Weber number. To characterize the electric properties
of the two-fluid suspension, we introduce the ratio of the dielectric permittivities
S−1 = ε2/ε1 and the ratio of the conductivities R = σ2/σ1, where the subscripts 1 and 2
refer to the drop phase and the suspending fluid, respectively (note that our notation
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follows that of Taylor 1966). Since the interface is massless, the forces in the fluids
on the two sides of the interface must balance. The corresponding force balances in
the normal and tangential directions at the interface in the presence of an applied
electric field read

Γ γ + ||n · T · n|| =0
||n · T · t|| =0

}
on Π, (2.3)

where T denotes the tensor containing both viscous and electrical contributions, γ

is the curvature of the interface, Γ is the constant surface tension coefficient and
n and t are unit normal (outward pointing from the drop phase) and unit tangent
vectors, respectively. Furthermore, in viscous flows the velocities must be continuous
across the interface, i.e. ||v|| =0. The jump notation ||G|| = G2 − G1 has also been
introduced. The electrohydrodynamic coupling through the interfacial conditions
(2.3) is accomplished by application of the continuum surface force (CSF) method
(Brackbill et al. 1992; Unverdi & Tryggvason 1992). This is achieved by converting the
sharp interface condition (2.3-1) into a volume integral that is implicitly incorporated
into the momentum equations as a volumetric source term. Furthermore, by assuming
that the material properties in the neighbourhood of the interface are solely functions
of a scalar quantity φ, we obtain the one-fluid formulation

ρ
Du
Dt

= − ∇p + μ∇ · 2D − Γ γ (φ)δ(φ)∇φ + Fel, (2.4)

where Fel is the contribution due to the electric field (see (2.8)), and δ(φ) is
the one-dimensional Dirac δ-function. Since discontinuous jumps of the material
properties q(φ) = {ε, σ}(φ) across the interface may introduce spurious oscillations in
the numerical solutions, we approximate these quantities in a neighbourhood θ of the
interface by

qθ = q2 + (q1 − q2)Hθ (φ), (2.5)

where Hθ denotes the smoothed Heaviside function

Hθ (φ) :=

⎧⎨
⎩

0 if φ < −θ
1
2

(
1 + φ

θ
+ 1

π
sin

(
πφ

θ

))
if |φ| � θ

1 if φ > 0.

(2.6)

In the computations reported here we set the thickness of the transition region
θ = 1.5h, where h denotes the distance between two adjacent mesh nodes. Similarly,
the δ-function in (2.4) is replaced by its smoothed version

δθ (φ) =
dHθ (φ)

dφ
=

{
1
2θ

(
1 + cos

(
πφ

θ

))
if |φ| <θ

0 elsewhere.
(2.7)

The new force term on the right-hand side of the momentum equations (2.4) is the
electric force density Fel which originates from the discontinuity of the electric stresses
across the interface. The non-zero net electric stresses arise due to a mismatch of the
electric displacement vector D = εε0 E in the direction perpendicular to the interface,
i.e. n · |D| = qs , where ε0 is the permittivity of free space (ε0 = 8.85 × 10−12 CV−1 m−1;
εi is the relative permittivity of region i), E is the electric field and qs is the interfacial
charge density (Melcher & Taylor 1969). In perfect dielectrics no free charge carriers
exist and the electric stresses act normal to the interface. In this study we will also
consider poor conductors – also termed leaky dielectrics – that support accumulation
of interfacial charges implying the presence of tangential electric stresses also (Saville
1997).
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The electric force density Fel in (2.4) can be computed by applying the divergence
operator to the Maxwell stress tensor T M , i.e.

Fel = ∇ · T M, T M
ij = εε0

(
EiEi − 1

2

[
1 − ρ

ε

(
∂ε

∂ρ

)]
EiEjδij

)
. (2.8)

The first term in the expression for T M
ij represents the electric stresses due to free

charge carriers and the second one models polarization stresses. The electrostriction
stress given by the last term in (2.8) is neglected in this study since the fluids are
incompressible. The electric force density is computed as follows. Since there is no
external magnetic field, time-varying currents are negligible implying that the curl of
the electric field is zero, i.e. ∇ × E = 0. Hence, the electric field can be computed from
the scalar voltage potential V via E = −∇V . Furthermore, we use the CSF approach
that allows us, by smoothing the electric permittivity ε(φ) and the conductivity σ (φ)
across the interface, to apply the divergence form to the Maxwell stress tensor equation
(2.8) on the entire flow domain. Thus, the computation of the electric force density
requires solving a single Laplace equation for the electric potential ∇ · (σ∇V ) = 0.

We close this section by describing our non-dimensionalization. The governing
equations are solved on a computational box with L/2H = 1, where L denotes the
length and 2H is the width of the channel, respectively. The no-slip and no-penetration
conditions are imposed at the rigid walls, and the flow is assumed periodic in the
horizontal direction. A shear-driven flow with a linear velocity profile is generated
in the channel by continuously moving the upper and lower channel plates with
velocity Uwall and −Uwall, respectively, such that the net fluid flow in the channel is
zero. An electric potential difference V = −2HE∞ is introduced into the channel
gap by maintaining the upper wall at constant voltage potential, while the lower one
is grounded. Lengths are scaled by the half channel width H , velocities by Uwall and
the material properties of the suspending fluid 1 are taken as reference values. This
leads to the following dimensionless groups describing the flow,

Re =
ρ1UwallH

μ1

, Ca =
μ1Uwall

Γ
, Weel =

ε0E
2
∞H

Γ
, R =

σ2

σ1

, S−1 =
ε2

ε1

, (2.9)

which represent the Reynolds number Re, the capillary number Ca which measures
the ratio of viscous to surface tension forces, the electric Weber number Weel which
characterizes the ratio of the electric to surface tension forces and the ratios of
conductivities and permittivities.

3. Numerical method using the level set technique
We use the level set technique introduced by Osher & Sethian (1988) to both

implicitly represent the fluid–fluid interface and to track its motion. First we embed
the initial position of the interface as the zero level set of a continuous higher-
dimensional scalar field φ(x, t). Second, we associate the evolution of this function to
the propagation of the interface itself through a time-dependent initial value problem,
so that at any time the zero level set corresponds to the fluid–fluid interface Π , that
is

Π = {x : φ (x, t) = 0} , (3.1)

where φ > 0, φ < 0 represent the fluid regions 1 and 2, respectively.
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The time evolution of the interface is modelled via transport of the level set function
φ(x, t) due to the underlying physical velocity field u(x, t),

∂φ

∂t
+ (uΠ · ∇) φ = 0, with uΠ = u · n. (3.2)

Note that (3.2) takes into account only the normal component of the interfacial
velocity to track the interface motion since the tangential velocity does not affect the
shape of the interface.

The numerical method to solve the electrohydrodynamic problem is briefly described
next. The spatial discretization of the governing equations is performed on a staggered
Cartesian mesh. A cell-centred collocated arrangement is used for the pressure, the
scalar potential, the material properties and the Maxwell stress tensor, while the
velocities and the components of the electric field vector are located on the cell faces.
The pressure gradient is discretized using values at the old time step such that the
resulting velocity field is not divergence free, in general. For this reason, the velocity
at the new time step is updated from the discretized continuity and momentum
equations in such a way that the solution of the resulting pressure equation ensures
a solenoidal velocity field that satisfies mass conservation; this leads to a Poisson
problem that is solved by a standard multigrid technique (see Chorin 1968 for details
of this projection method to solve the Navier–Stokes equations). In addition, we
apply an essentially non-oscillatory (ENO) scheme of third-order accuracy (Osher &
Shu 1991) for the treatment of the convective terms in the momentum equations. A
standard level set equation is used to move the interface as described above, with
time integration carried out using a second-order explicit Adams–Bashford method.
The time step is adjusted to satisfy the CFL condition and constraints due to surface
tension and the jump of the electric properties. Parallelization of the code is performed
on conventional domain decomposition using MPI.

At each iteration step, the velocity and pressure fields are first computed by
marching the discretized Navier–Stokes equations by one time increment. Then, the
level set equation (3.2) is advanced using the newly computed fluid velocity field. The
difficulty with this procedure is that φ does not remain a signed distance function as it
is marched in time and hence errors accumulate. These errors are usually observed as
loss or gain of mass. Different strategies of correcting the numerical method have been
developed in order to conserve mass. A widely used approach is to reinitialize the level
set function after each time step (Sussman et al. 1994). Ideally, the interface should not
change its position during this reinitialization procedure, but in many applications
the zero level set can become distorted by parasitic numerical inaccuracies if the
gradients in the neighbourhood of the interface are either very large or very small.
For this reason, an improved reinitialization method was proposed by Sussman &
Fatemi (1999), where the mass conservation is enforced by artificially modifying the
interfacial velocity. Although this method inherently preserves mass, it introduces
a non-physical correction term to the interfacial velocity. A different approach was
developed by Sethian (1996, 1999), who built velocities for the neighbouring level set
when the physical velocity is defined solely on the interface itself by using the fast
marching method (see below). These extension velocities replace the fluid velocity in
the level set equation by the normal velocity of the interface. The advantage of this
approach is that the level set function is marched in time according to a given velocity
field that is prescribed on the interface. Hence, the signed distance property of the
level set function is maintained, and the need for reinitialization is drastically reduced
or eliminated. Noticing that the values of the level set function are only needed
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in the neighbourhood of the interface, the narrow-band method was introduced by
Adalsteinsson & Sethian (1995). In this approach the level set function is advanced
only in a narrow band of a few mesh points of the interface. Both the narrow-band
and velocity extension methods are used in the present computations.

Next we briefly describe the implementation of the narrow-band level set method
and refer the reader to the literature for more details. The level set function is
constructed by starting from the initial position of the interface and computing the
signed distance function, employing the very efficient fast marching technique (Sethian
1996). To advance the level set function velocities are required throughout the narrow
band. Since the velocities are initially defined only on the interface itself, we use
the extension technique introduced by Adalsteinsson & Sethian (1999) to define the
velocity for all the level sets, not just the one representing the interface. Along the
interface the normal velocity is defined as

F = u · ∇φ/ |∇φ| . (3.3)

The interfacial velocity F is computed by evaluating (3.3) using the bicubic
interpolation method of Chopp (2001). The basic idea is to use information at the
mesh points in the neighbourhood of the interface to construct a bicubic interpolation
polynomial, and then, to exploit this polynomial for each mesh point adjacent to the
interface to find the closest point on the interface and its velocity F . After we initialize
adjacent grid points by projecting the interfacial velocity values just found, we use
the fast marching method to update the values of φtemp and Fext in the entire narrow-
band set. That is, the extension velocities are built by simultaneously constructing a
temporary signed distance function, φtemp say, and an extension velocity as solution
of the Eikonal equation ∇φtemp · ∇Fext = 0. Using the extension velocity Fext the level
set equation (3.2) can be rewritten as

∂φ

∂t
+ Fext |∇φ| = 0. (3.4)

Finally, the level set band is marched in time by solving (3.4) with a second-order
Adams–Bashford multistep scheme.

4. Numerical results
We begin by studying the dynamics of a periodic array of drops in a Couette device

without an electric field in order to identify the driving mechanisms that cause the
deformation of an initially circular drop and to validate the code. Subsequently we
impose a vertical electric field and simulate its effects on the drop deformation, for
both perfect and leaky dielectric fluids. There is a large set of parameters to consider
and in the results that follow we assume that the drop phase and the suspending
fluid have the same viscosity and density. The radius a of the initially circular drop
is taken to be equal to a quarter of the channel height, i.e. a/H = 1/2, which leads
to an area ratio Adrop/Achannel = π/16. We note that several authors have extensively
studied the same set-up in the literature – detailed results are documented in Zhou &
Pozrikidis (1993a, 1994), Kennedy et al. (1994) and Sheth & Pozrikidis (1995).

The simulations are initialized by suddenly introducing the drop into the Couette
device. Stressed by the incident shear, the drop immediately begins to elongate in the
direction of the major principal axis of the rate of strain of the mean flow. That is,
the drop deforms into an ellipsoidal shape while generating a non-uniform curvature
of the interface to compensate the interfacial shear stresses. To check the sensitivity
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Figure 2. Cross-sectional pressure profile at x/H = 1 (a) and a section of the drop shape (b)
at non-dimensional time t = 1.5. The solutions were computed on three different meshes with
64 × 64, 128 × 128 and 256 × 256 nodes, respectively. Re= 1, Ca = 0.2, Weel = 0.

of the numerical solutions on the mesh size, the vertical variation of the computed
steady-state pressures at the horizontal position x/H = 1 (i.e. the centre of the channel)
is compared in figure 2(a) for three different meshes having 64 × 64, 128 × 128 and
256 × 256 nodes each. Other parameter values are Re =1, Ca = 0.2 and Weel = 0. It
is seen that the pressure has jumps at the vertical positions y/H ≈ 0.5, 1.5 where the
interface is located – the jumps are smeared out for the coarse mesh (64 × 64) but are
sharply resolved for the medium (128 × 128) and fine (256 × 256) meshes. A section
of the drop shape is shown in figure 2(b) for the three different discretizations. The
drop shapes on the medium and fine meshes are almost identical, but differences are
evident when compared to the coarse grid solution. The percent area gain/loss (+/−)
of the drop area from its initial size was found to be +0.19 on the coarse mesh, +0.15
on the medium mesh and +0.04 on the fine mesh, respectively. Since time-dependent
highly accurate solutions are computationally expensive we employ the 128 × 128
mesh for all the computations reported in what follows, unless stated otherwise.

When an initially circular liquid drop is suddenly introduced into a simple shear
flow it deforms with a time-dependent shape and orientation. A deformation takes
place whether an electric field is absent or not and in the ensuing discussion we
consider the Weel = 0 case. Whether an equilibrium state exists or the drop elongates
indefinitely, depends on the values of dimensionless parameters such as the Reynolds
and capillary numbers Re and Ca, and the viscosity ratio λ, for example. At small
values of Ca the deformation approaches an ellipsoidal equilibrium shape, while at
sufficiently large values of Ca the drop continues to elongate indefinitely and most
probably breaks up when additional effects such as Van der Waals attraction forces
become important. Inertial effects are negligible at small Reynolds numbers and the
interplay of surface tension forces and viscous forces determines the drop dynamics. In
this regime the drop elongates along the principal extension direction and is squashed
in the direction normal to it. In addition, a single vortical swirl flow is formed inside
the drop. When Re is increased, the drop rotates towards the mean-flow direction
and the velocity field inside the drop generates additional swirls. Highly elongated
equilibrium shapes appear at smaller angles θ between the major axis of the drop and
the horizontal. Inertial effects are dominant at the poles where the drop experiences
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Figure 3. Evolution of the deformation parameter Df (a) and the orientation angle
(b) θ of a periodic array of liquid drops suspended in simple shear flow at Ca = 0.2,
0.4, 0.6, 0.8,Re = 1,Weel = 0.

the highest flow rates and this explains the sigmoidal equilibrium shapes that are
observed in this regime. It has been established by our calculations (in complete
agreement with other authors) that for Ca > 0.2 and λ= 1, significant deviations
from the theoretically predicted elliptical shape appear. Moreover, for Ca > 0.5, the
viscous forces responsible for the drop deformation exceed the shape preserving
surface tension forces and the drop elongates significantly. In our computations in
this regime we observe indefinite elongation – the level set technique is capable of
going through a topological transition but this is a very delicate phenomenon to
reconcile with the underlying physics. We typically halt our computations when the
drop elongates indefinitely and conclude that no steady state exists in such cases.

Following Taylor (1966) the parameter Df = (Lmax − Lmin)/(Lmax + Lmin), where
Lmax is the length of the major axis and Lmin the length of the minor axis of an
approximated ellipsoid, provides an appropriate measure of a slightly deformed drop.
The orientation of the drop, which characterizes the effectiveness of a particular
flow (or electric field strength in the absence of a background flow as in Taylor
1966) in deforming it, is given by the angle θ between the ellipsoid major axis and
the horizontal axis. According to Rhodes, Snyder & Roberts (1989) who study the
deformation of droplets by an electric field in a quiescent medium, the deformation
is elliptical for small interfacial distortions, while for large deformations the shape
deviates substantially from an elliptical one. To quantify the evolution of the drop
deformation we construct the parameter Df introduced by Taylor even in situations
where the drop is not strictly elliptical, by estimating Lmax and Lmin for an equivalent
least-squares fitted elliptical shape. True elliptical shapes are recovered for slightly
deformed drops at small capillary numbers but deviations from ellipses occur when
strong shearing or electric stresses act on the drop interface as our results show below.

The evolution of the deformation parameter Df and the orientation angle θ between
the major axis and the horizontal axis is plotted in figure 3 for the flow characterized
by the capillary numbers Ca = 0.2, 0.4, 0.6, 0.8 and Re =1. The simulations indicate
that the drop evolves smoothly from a circular to an elliptical shape. For Ca = 0.2
the drop reaches an equilibrium state after approximately 1.0 time unit from its
introduction into the Couette device. As the capillary number increases, higher
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Figure 4. Streamline patterns and contours of the kinetic energy of a periodic array of
liquid drops suspended in simple shear flow at Ca = 0.2, 0.4, 0.6, 0.8,Re = 1,Weel = 0.

interfacial curvatures are locally necessary to balance the shear stress and the time
to equilibrium increases. Furthermore, the direction in which the drop elongates is
governed by the incident shear, explaining why the orientation angle begins at θ = 45◦

(defined thus so that it coincides with the direction of the shear) and decreases as the
capillary number increases causing larger deformations. According to these results,
the orientation angle appears to have a non-monotonic behaviour as Ca increases.
The streamline plots of figure 4 below, however, indicate that the orientation angle
decreases monotonically with Ca. This discrepancy is due to the limitation of the
definition of the orientation angle which is calculated by first fitting the drop shape
to an ellipse, as is conventional in the literature. We note that analogous results were
obtained by Sheth & Pozrikidis (1995).

In figure 4 we show streamline patterns and contours of the kinetic energy
Ekin = (1/2)v · v, corresponding to the run shown in figure 3. Since the incident
velocity varies linearly in the vertical direction from −Uwall to +Uwall (or −1 to
+1 in dimensionless terms), regions of high energy are confined to the horizontal
walls. Due to the action of the interfacial forces a single clockwise rotating eddy
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is formed inside the drop. For Ca = 0.2 at t = 1.5, the interface is tangential to
the local streamlines and separates the recirculation zone from the translating fluid
region. Moreover, the streamline patterns at time t = 1.5 do not cross the interface
indicating that the deformed drop has reached its equilibrium shape in agreement
with the results in figure 3. The streamline patterns for Ca = 0.4 at t =2.5 also
indicate that an equilibrium shape has been attained, again in agreement with the
results of figure 3. For Ca = 0.6 at t = 3.5 there is a slight streamline crossing, while
for Ca = 0.8 at t = 4.5 streamline crossing is very evident. In fact for Ca = 0.8 the
drop elongates indefinitely; the case Ca =0.6 is very close to the threshold value
above which such infinite elongation occurs, and a significantly longer computation
is required to determine if a steady state is reached.

4.1. Perfect dielectric fluids

To study the effects of an electric field on drop deformation we repeat the numerical
simulations discussed above but now impose a constant voltage potential difference
between the channel walls. In the absence of a drop an electric field with lines of
constant potential parallel to the wall electrodes is generated. We introduce a liquid
drop and assume that the two fluids are perfect dielectrics characterized by the
permittivity ratio S−1 = ε2/ε1 = 2. The electric Weber number Weel is set to 50, while
the Reynolds number Re is 1. In addition to surface tension and viscous stresses,
the electric field in perfect dielectric liquid–liquid systems acts to generate stresses
that act perpendicular to the interface. It can be shown theoretically that in such
cases, and in the absence of a background shear, a liquid drop always evolves into a
prolate shape irrespective of the permittivity ratio (Taylor 1966). We also note that the
electric stresses have maximum values around the poles of the drop, and since surface
tension counteracts stretching, the largest shape curvature occurs in this region. If the
intensity of the electric field is large the extremities of the drop are found in the outer
flow regions, that is in regions of higher flow rates. Hence, inertia gains importance
locally and the drop looses its elliptical shape and attains a sigmoidal shape (this can
be seen in the bottom right panel of figure 5, for example).

The initially uniform electric field is disturbed due to the presence of the drop
which introduces a disparity in the dielectric permittivity between the two phases. In
figure 5 we show the direction of the disturbed electric field (lines with arrows) and
its intensity |E| (contours) for a flow characterized by Ca =0.2, 0.4, 0.6 and 0.8 at
t = 1.5, 2.5, 3.5 and 4.5, respectively. In all four cases the electric Weber number is
50 and Re =1. Inside the drop the electric field lines are straight, but the direction
of the electric field changes across the interface in order to satisfy Gauss’s law that
reduces to the continuity of the displacement field in this case (see § 2). In addition,
the electric field attains its maximum intensity around the drop interface in regions
that are closest to the electrodes, where it induces the largest interfacial stresses. The
increase of the drop deformation and the decrease in the orientation angle θ between
the major axis of the drop and the horizontal from Ca = 0.2 to Ca =0.8 is clearly
visible. We remark that without flow the drop attains a symmetric prolate shape.
The incident shear flow accounts for the break of this symmetry and the ensuing
hydrodynamic coupling.

The corresponding streamline patterns and contours of the kinetic energy for
the previous computation (Ca = 0.2, 0.4, 0.6, 0.8, Weel = 50, Re = 1) are presented in
figure 6. It can be seen from the streamline patterns that steady states have been
reached for the two smallest capillary numbers, whereas for Ca =0.6 at t = 3.5 some
streamline crossing is still discernible while for Ca =0.8 the drop is still deforming at
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a time t = 4.5. The presence and deformation of the drop due to the shear and the
electric field, tends to block the incident shear so that regions of high kinetic energy
are established in the gap between the drop and the wall, in turn affecting the shear
stress on the wall.

Next we consider the effect of the electric Weber number Weel on the evolution of
the drop and in particular the deformation parameter Df . The results are presented
in figure 7 and have capillary numbers Ca = 0.2, 0.4, 0.6, 0.8, electric Weber numbers
Weel = 0, 10, 25, 50, Reynolds number Re= 1 and a permittivity ratio S−1 = 2 as
before. With the exception of the smallest capillary number case Ca = 0.2, the
deformation is found to monotonically increase with increasing Weel ultimately
yielding more deformed equilibrium shapes (if they exist). We also note that the
time to equilibrium increases with Weel . For Ca =0.2, and for the electric Weber
numbers Weel = 10, 25 the deformation is slightly smaller than for Weel =0. One
explanation for this is that there is a competition between the shear that tends to
deform the drop in its direction, and the field which according to the results of Taylor



Electric field effects on the deformation of two-dimensional liquid drops 381

0.2

0.3

0.1

0.3

0.1

0.4

0.2

0.4

y/
H

 (
-)

0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

Ca = 0.2, Time = 1.5

0.4

0.1

0.3

0.1

0.3

0.2

0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

Ca = 0.4, Time = 2.5

Ca = 0.6, Time = 3.5 Ca = 0.8, Time = 4.5

0.1

0.4

0.1
0.2

0.3

0.2

0.3

0.4

y/
H

 (
-)

x/H (-) x/H (-)
0.5 1.0 1.5 2.0

0

0.5

1.0

1.5

2.0

0.4

0.1

0.3

0.2

0.1
0.2

0.3

0.4

0.5 1.0 1.5 2.0
0

0.5

1.0

1.5

2.0

Figure 6. Streamline patterns and contours of the kinetic energy of a periodic array of liquid
drops in simple shear flow at Ca = 0.2, 0.4, 0.6, 0.8, Re= 1 when an electric field at Weel = 50
is present in the gap.

(1966) tends to induce prolate deformations, so that at small values of Ca and Weel

the cumulative effect is a slightly smaller deformation. On the other hand the results
for the highest value of Ca = 0.8 indicate that the deformation reaches a maximum
value at a certain time and then starts decreasing. We emphasize, however, that this
is due to the definition of Df and its construction for non-elliptical shapes. The
drop shapes shown in figure 6 at Ca = 0.6, 0.8, for instance, are sigmoidal and so
the applied least-squares fit based on elliptical shapes leads to the variations in the
deformation parameter outlined above.

The orientation angles that correspond to the results of figure 7 are shown in
figure 8. The initially circular drop is introduced into the flow at t =0, and so all the
curves pass through the θ = 45◦ point at t = 0 (after the first time step the flow induces
stretching in the shear direction and so the orientation angle at t =0+ is π/4). The
qualitative characteristics are similar for all four values of Ca. The angle increases
monotonically as Weel is increased so that for a given Ca, the curves are ordered
with the smallest angles attained at Weel =0 and the largest at Weel = 50. This is due
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suspended in simple shear flow at Ca = 0.2, 0.4, 0.6, 0.8, Re= 1 when an electric field given by
Weel = 0, 10, 25, 50 is present in the gap.

to the stretching of the drop towards the wall electrodes caused by an increasing
electric field. In addition, the presence of an electric field causes an overshoot in
the orientation angle after the drop is initially introduced into the flow, whereas the
non-electrified case gives monotonically decreasing orientation angles throughout the
evolution.

Next we consider the flow structure by studying the vorticity field inside and outside
the drop. Vorticity is generated due to the deformation, the interfacial stresses and
by the interaction of the disturbed Couette flow with the rigid channel walls. The
distribution and strength of vorticity inside and outside the drop are relevant to
problems such as mixing or heat and mass transfer (Ward & Homsy 2001, 2003).
Figure 9 shows the vorticity distribution in the flow for the capillary numbers
Ca =0.2, 0.4, 0.6, 0.8 at an electric Weber number Weel = 50. (The Reynolds number
is set to unity as before.) Two regions of high-vorticity production can be identified in
the flow. Large positive values occur in the vicinity of the poles of the deformed drop
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and these positive vorticity maxima are paired with spots of negative vorticity directly
above (or below) them in the vicinity of the wall. Large negative vorticity regions
are also found at the equator of the deformed drop. Furthermore, the transport as
well as the diffusion of vorticity in the centre region of the channel is clearly evident
in figure 9, and in particular at the larger capillary numbers Ca = 0.6, 0.8. Similar
vorticity generation regions in deformed drops have been identified by Ryskin & Leal
(1984) in a non-electrified problem.

In the results presented in figure 10 we consider the effect of variations of the
permittivity ratio S−1 on drop deformation. All the results in the figure fix Re =1
and Ca = 0.2. Physical examples of such systems are castor oil drops in silicone oil
1 M (S−1 = 2) or a silicone oil 1 M drop in castor oil (S−1 = 0.5) (see Burcham
& Saville 2000 and the discussion of physical systems in § 4.2 below. The range
S−1 = 0.1, 0.5, 2, 10 is covered at Re = 1, Ca = 0.2, Weel = 10, λ=1, and it is seen from
the results that the deformation parameter Df at steady state, if this exists, is not a
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Figure 9. Vorticity distribution in the liquid drop suspension at Ca = 0.2, 0.4, 0.6, 0.8, Re= 1
when an electric field given by Weel = 50 is present in the gap.

monotonic function of S−1. Starting with the smallest values of S−1 = 0.1 we observe
that the steady-state values of Df decrease slightly as S−1 is increased to 0.5 and 2,
respectively. As S−1 is increased further to a value of 10 we see that the deformation
parameter approximately doubles on its way to attaining its steady-state value which is
yet to occur when the computation is halted at t =1.5. This non-monotonic behaviour
is also emphasized in the results of the orientation angle shown in figure 10(b). The
orientation angle at the smallest value of S−1 = 0.1 is about 50◦, and it decreases
significantly to values of approximately 40◦ and 30◦ as S−1 increases to values of 0.5
and 2. The non-monotonicity is evident in the evolution of the orientation angle for
S−1 = 10 which reaches an angle of more than 60◦ by the end of the computation.
We conclude, therefore, that for a fixed set of physical parameters and values of
the relative permittivity satisfying S−1 > 1, the drop deformation and its angle of
orientation can be increased by increasing the permittivity of the drop liquid relative
to the suspending fluid. In such instances, this implies more slender drops that tend
to align with the underlying electric field. Our computations also indicate that for
sufficiently large values of S−1 the deformed drop elongates indefinitely without a
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steady state being reached. One possible explanation for this behaviour is the increased
effect of the electrical stresses at the interface and their role in deforming the drop.
A comparison for different values of S−1 is provided in figure 11. The figure shows
the variation of the electric potential with the vertical coordinate in the middle of
the channel, that is V (x = H, y), corresponding to the runs of figure 10. The values
of S−1 are indicated on the figure and several features are worth pointing out. First,
in all cases the position of the drop interface is located where there is a sharp change
in the slope of the potential (i.e. a sharp change in the electric field). The numerical
method smoothes this out as is evidenced in the figure. In addition, the magnitude of
the field inside the drop increases as S−1 is increased, while the field intensity outside
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Figure 12. Effect of the capillary number Ca and electric Weber number Weel on the evolution
of the deformation parameter Df (a) and the orientation angle θ (b) of a periodic array of
liquid drops suspended in simple shear flow at Re= 10. Values of Ca and Weel indicated on
the figure; S−1 = 2, λ= 1. The inserts on (b) show the drop profiles for Weel = 0 (solid) and
Weel = 10 (dashed) at times t = 0.5, 1, 3.5.

the drop decreases. The jump in the field drives the Maxwell stresses at the interface
which in turn affect drop deformation – the results of figure 11 suggest that among
the different values of S−1 considered this effect is largest for the case S−1 = 10.

We conclude this section by presenting a set of computations at a Reynolds number
Re= 10 in order to evaluate the effects of increased inertia. The computational
resolution is the same as for the Re= 1 cases (a grid of 128 × 128 is used). For
definiteness we consider the permittivity ratio S−1 = 2 and compute the evolution of
the deformation parameter Df and the orientation angle θ for different values of the
capillary and electric Weber numbers. The results are shown in figure 12. Specifically,
we consider the flow for the capillary numbers Ca =0.2, 0.4, 0.6, 0.8, and for each
of these compute two sets of results: electric field absent Weel =0 and present with
Weel = 10. We observe (in line with the computations of Lee & Pozrikidis 2006)
that in the absence of an electric field there is an overshoot in the evolution of the
deformation and orientation angle when inertia is present. At the lower values of
Ca =0.2, 0.4 the electric field increases the deformation at steady state, whereas at
the larger values Ca =0.6, 0.8 the deformation in the absence of a field is larger
than that in its presence throughout the evolution (due to computational costs we
have not integrated beyond t = 3.5 and hence cannot preclude the possibility of a
crossover and a larger deformation in the presence of a field for Ca = 0.6 and 0.8 at a
much larger time). The analogous results for the orientation angle θ of the drop with
the horizontal are collected in figure 12(b). Two conclusions can be drawn from the
figure: First, irrespective of the value of Ca, the presence of the electric field increases
the orientation angle and hence tends to align the major axis of the drop with the
direction of the imposed electric field. Second, the behaviour is monotonic, that is
the smallest Ca results have the largest orientation angles, irrespective of whether the
field is present or not. This can be seen in the figure since the curves corresponding
to Weel = 10 are all higher (at steady state) than those for Weel = 0. Furthermore,
the orientation angle decreases as Ca increases, in all cases. Representative solutions
of the drop shape at three times during the evolution are included as inserts in the
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figure for the case Ca =0.2. Drop shapes are shown at t = 0.5, 1 and 3.5 with the
solid and dashed curves denoting Weel = 0 and 10, respectively. It is clear that the
drop deforms as the evolution progresses and by t = 3.5 when a steady state has been
reached the difference in the orientation is pronounced – the electrified system has a
more elongated and more vertically aligned drop.

4.2. Leaky dielectric fluids

In this section we present computations based on the leaky dielectric model. As
mentioned in § 1, Taylor analysed the static configuration of spherical drops in the
zero Reynolds number limit and derived analytically a relation that discriminates
between prolate and oblate forms. A similar analytical relation for two-dimensional
drops was later given by Rhodes et al. (1989),

Φ = R2 + R + 1 − 3S−1, (4.1)

where the suspending fluid and the drop phase are assumed to have the same
viscosity (λ= 1) – recall that S denotes the permittivity ratio ε1/ε2 and R denotes the
conductivity ratio σ2/σ1. Equation (4.1) predicts prolate drops for Φ > 0, and oblate
ones for Φ < 0, while Φ = 0 represents zero deformation. The leaky dielectric model
supports a jump in tangential electric stresses and hence we anticipate differences
in drop deformation behaviour between leaky and perfect dielectric systems. The
computations that are described next provide a quantitative comparison for several
typical cases.

Here, two (R, S−1)-pairs of leaky dielectrics with (0.5, 2) and (2, 0.5) are considered,
defined as systems A and B, respectively. Systems A and B are chosen as representative
examples rather than values provided by particular fluid samples. System A represents
a drop whose conductivity is smaller but its permittivity is larger than the surrounding
fluid, while system B represents a drop whose conductivity is larger but its permittivity
is smaller than the suspending fluid. Examples of such systems are a castor oil drop
in silicone oil 1 M (system A) or a silicone oil 1 M drop in castor oil (system B).
Specifically, using experimental values for these oils measured by Burcham & Saville
(2000) gives approximate values of R = 35 and S−1 = 2 for the analogue to system
A, and R = 0.03, S−1 = 0.5 for that of system B. We note also that for these oils the
density and viscosity ratios are roughly equal. On the other hand, a silicone oil 12 M
gives approximate values of R = 18 and R = 0.06 for systems A and B, respectively,
but the viscosity of silicone oil 12 M is now about 12 times larger than that of the
castor oil. We note that the conductivity of the silicone oils can be enhanced using
doping in order to obtain a large range of values of R that includes the computational
parameters picked here (see Shankar & Sharma 2004).

Figure 13 compares the streamlines (thin lines with arrows) and the contours of the
kinetic energy (thick solid lines) in the flow for system A (left panel) and system B
(right panel) computed for the electric Weber numbers Weel = 25 and 50. The results
indicate that the effect of the electric field on the drop is different for the two systems.
For system A the drop is stretched towards the electrodes leading to a prolate shape,
but a deformation in the horizontal direction dominates for system B so that the
drops achieve an oblate shape. The relatively enhanced channel blockage for system
A causes regions of high velocity in the vertical gap between the drop and the channel
walls and an intricate streamline pattern in the wake of the drop. In contrast, for
system B the streamlines close to the wall are less affected by the drop’s presence due
to its alignment with the mean flow direction.
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Figure 13. Streamline patterns and contours of the kinetic energy of a periodic array of
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Figure 14. Evolution of the deformation parameter Df of a periodic array of liquid drops
suspended in simple shear flow (leaky dielectric system A) at Ca = 0.2, 0.4, 0.6, 0.8, Re= 1
when an electric field given by Weel = 10, 25, 50 is present in the gap.

In figure 14 we present a comparison of the leaky dielectric system A with a perfect
dielectric system having permittivity ratio S−1 = 2. Results for the evolution of the
deformation parameter Df and the corresponding orientation angle are shown for a
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Figure 15. Evolution of the deformation parameter Df of a periodic array of liquid drops
suspended in simple shear flow (leaky dielectric system B) at Ca = 0.2, 0.4, 0.6, 0.8, Re= 1,
when an electric field given by Weel = 10, 25, 50 is present in the gap.

range of values of Weel = 10, 25, 50. The results reveal that at small electric Weber
numbers (Weel = 10) the drop in system A experiences smaller deformations but larger
orientation angles than those in the perfect dielectric system. As Weel increases the
deformations increase and the drops tend to align with the vertical – the orientation
angles satisfy θ > 45◦ as found previously in the results of figure 13.

Analogous results for system B are depicted in figure 15 where a comparison
with the perfect dielectric case having S−1 = 0.5 is carried out. The deformation
parameter Df exhibits a monotonic increase with Weel with the smallest values
achieved by the perfect dielectric system which is electrified with a field strength
characterized by Weel =10. We can conclude, therefore, that for system B the presence
of finite conductivity when the drop to suspension permittivity ratio is less than one
tends to enhance the deformation monotonically in contrast to system A which
undergoes a reduction in deformation initially until Weel increases sufficiently (see
figure 14). The main difference between the results for systems A and B are in the
orientation angles encountered after a sufficiently long evolution. For system B (see
figure 15b) the orientation angle increases, relative to the perfect dielectric case, at
the smallest electric Weber number Weel = 10. As Weel increases to values of 25 and
50, a monotonic reduction in θ is observed with orientation angles becoming as small
as 20◦, approximately. This in turn implies that the drop for system B tends to align
with the horizontal as Weel increases. Our results show that in leaky dielectric systems
with relative permittivity S−1 > 1 the drops can be caused to align with the vertical by
increasing the electric field strength. In contrast, for permittivities S−1 < 1 (system B)
an increase in electric field strength tends to align the drops with the horizontal so
that the field in this case acts in tandem with the shear and surface tension forces.

5. Conclusions
The effect of an electric field on a periodic suspension of viscous drops in a Couette

device has been studied in this article. The numerical approach rests on the classical
projection method for the Navier–Stokes equations and the level set technique for
the evolution of the fluid–fluid interface. Moreover, the CSF technique is employed
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to incorporate the interfacial stresses generated by the curvature and the electric
field into the momentum equations as volumetric source terms. The results of the
numerically simulated drop deformation due to incident shear have demonstrated
that the implemented method of solution is capable of tracking the drop dynamics
accurately and the code has been used to explore the effect of electric fields on drop
deformation in an underlying shear.

The effect of an electric field on the drop deformation has been simulated
for different field intensities and for both perfect as well as leaky dielectric
suspensions. It is known from the hydrodynamics literature that drop deformation
and elongation takes place as the Reynolds number or capillary number are increased.
In the electrohydrodynamic problem we have established two additional ways that
deformation and drop extension (possibly indefinite elongation if the parameters are
chosen appropriately) take place in perfect dielectric systems. We find that for fixed
capillary numbers, Reynolds numbers and electrical properties of the fluids, the effect
of an increasing electric field (measured by the dimensionless electric Weber number
Weel) is to deform the drop into an increasingly elongated shape and at the same time
to increase its orientation angle with the horizontal. Therefore, the drop elongates and
tends to align vertically with the imposed electric field, but is prevented from doing so
by the underlying flow which in turn tends to align the deformed drop with the incident
shear direction. The interaction between these mechanisms determines the ultimate
configuration and it has been established numerically that steady states which emerge
at relatively small capillary numbers, transform to unsteady continuously deforming
states at sufficiently large values of Weel . As a result of the additional deformation
and orientation with the vertical induced by the electric field, the distance between
the poles of the drop and the channel walls decreases and modifies the distribution
of the pressure and shear stress along the wall.

Variations of the permittivity ratio for perfect dielectric systems have also been
considered and in addition to some interesting non-monotonic behaviour in the
steady-state deformation parameter as S−1 = ε2/ε1 is increased from small values,
we find that the drop can be deformed significantly by increasing S−1, all other
parameters kept fixed. The physical reason for this is the decrease of the field inside
the droplet when its permittivity is much larger than that of the surrounding fluid,
which in turn induces larger values of the Maxwell stresses at the interface. These
results are given in figures 10 and 11.

Computations have also been carried out at a Reynolds number Re= 10 in order
to assess the effect of higher inertia. Values of Ca = 0.2, 0.4, 0.6, 0.8 were chosen and
the flow computed for Weel = 0 (no field present) and Weel = 10. It is established in all
cases that the deformation is larger than that for the lower Reynolds number Re = 1
and that the orientation angle with the horizontal increases for the larger value of
Re. These conclusions can be drawn from the results of figures 7 and 8 and those of
figure 12. For example, the deformation for Ca = 0.2, Re= 1, Weel = 10 is Df ≈ 0.12
whereas for Ca = 0.2, Re = 10, Weel =10 it is Df ≈ 0.23, that is almost twice as large.
Corresponding results for the orientation angles are θ ≈ 40◦ for Re = 1 and θ ≈ 70◦

for Re =10, implying a tendency for the alignment of the drop with the vertical as
the Reynolds number increases. Similar trends are observed for other values of Ca.

Systems of leaky dielectrics have also been studied and in particular two
representative cases have been computed in detail. The first system consists of a drop
which is less conducting but having higher permittivity than the surrounding fluid,
while for the second system the drop is more conducting but has a lower permittivity
than the suspending fluid. These cases are motivated by the drop/suspending fluid
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systems of castor oil in silicone oil or vice versa (see § 4 and Burcham & Saville
2000 for values). Compared to a base case of perfect dielectric systems having a
permittivity ratio S−1 = 2, we find that a drop which is less conducting than the
suspending fluid but at the same permittivity ratio (S−1 = 2) deforms more and tends
to align with the vertical. The opposite behaviour is found for a more conducting
drop but which also has a smaller permittivity than the surrounding medium (in fact
S−1 = 0.5 in our computations). That is, the deformation is smaller and the drop is
more aligned with the horizontal becoming more oblate than the perfect dielectric
case. These conclusions are established from the orientation angle plots included in
figure 14(b). The change in the orientation towards the vertical brings the drop poles
closer to the walls of the Couette device and affects the distribution of pressure and
shear stress along the walls. For conducting systems, therefore, our results indicate
that an electric field can be used to enhance or reduce deformation and orientation
with the vertical relative to the perfect dielectric or indeed non-electrified flow. Such
findings may be useful in the design of processes that require the control of drop
evolution and final shapes.

We close with some tentative comments regarding the effect of electric fields in
the elongation and breakup of drops in three dimensions. It is known that highly
viscous three-dimensional drops (λ> 4) cannot be made to exhibit infinite elongation
by increasing the shear rate (we thank a referee for pointing this out). An electric field
may be useful in elongating the thread beyond the λ≈ 4 threshold, by analogy with
the present two-dimensional calculations. Regarding capillary instability, the presence
of an electric field typically reduces both growth-rates and the band of unstable
wavenumbers, enhancing stability. Therefore, one can envision the use of a field for
elongation of threads but then switching it off to allow pinch-off in the usual Rayleigh
instability scenario.
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